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LIQUID CRYSTALS, 1989, VOL. 4, No. 1, 69-78 

Perturbation theory for planar nematic twisted layers 

by P. SCHILLER 
Sektion Chemie der Martin-Luther-Universitat, Halle-Wittenberg, 

WB Physikalische Chemie, Muhlpforte 1, 4020 Halle, G.D.R. 

(Received 13 May 1988; accepted 27 June 1988) 

As is well known, planar nematic layers exhibit a Freedericksz transition in 
electric fields. This effect can be strongly influenced by both geometrical and 
material parameters. Based on a perturbation method an analytical mathematical 
description is proposed, which is valid for small and intermediate deformation 
angles. 

1. Introduction 
Planar oriented liquid-crystalline layers are widely used in low power electro-optic 

displays. The optical properties of such layers depend strongly on various geometrical 
and material parameters. Usually, optimum display parameters are calculated by 
computer modelling [ 11, although there have also been attempts to obtain additional 
information with an analytical treatment [2,3]. These results, obtained to a first 
approximation, refer to zero pretilts of the director at the boundaries. Comparison 
with data obtained by numerical calculations shows good agreement when the 
maximal rotation angle in the mid-plane of the layer is small [3]. However, the 
agreement becomes poorer for larger rotations. 

A perturbation approach is suitable to extend the analytical theory in two direc- 
tions. First, small pretilt angles at the bounding plates of the layer are included and 
secondly, the mathematical description is improved by a higher order approximation. 

Figure 1 shows, schematically, the geometry of a twisted nematic cell. The nematic 
phase is confined between the bounding plates at z = 0 and z = d. The tilt angle 0 
which depends on z is enclosed between the preferred direction of the long molecular 
axes (the director) and the plane z = constant. At the lower and upper plate 0 has the 
fixed values K and 0, respectively. The azimuthal angle @ grows gradually with 
increasing z from zero to a. 

Introducing the dimensionless coordinate 

712 x = -  
d ’  

which varies between zero and n, the boundary conditions are written as 
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70 P. Schiller 

Figure 1. The geometry of a twisted nematic layer. 0, angle between the director and the plane 
z = constant; @, azimuthal angle of the director; CL, maximum twist angle; K ,  w, surface 
tilt angles. 

2. Torque balance equations 
The free energy density of chiral twisted nematic layers depends on the elastic 

distortions according to [4] 

(K,, cos2 8 + K3, sin’ e)@ 2d 
+ (K,, sin’ 8 + K22 COS’ e) COS’ e@; 
- K22cos212@x , 

P 1 
with the abbreviations 

ae a@ 
ax ax 

8, = - and Ox = - 

and also on the electric field according to 
D2 

2(eL cos2 8 + ell sin2 e) F, = 

(3) 

(4) 

Here K I I ,  KZ2,  and K,, are the splay, twist and bend elastic constants of the Oseen- 
Frank theory IS], and P is the helix pitch for a chiral nematic. D is the dielectric 
displacement, while and el denote the dielectric constants measured parallel and 
perpendicular to the director, respectively. For stable director configurations the free 
energy 

F = Jo* dx(& + FJ 

is a minimum. 

[I], namely 
By applying this condition, torque balance equations can be derived for 8 and @ 

e,,v = - L(sin2 eeY, + sin ecosee:) -t- v (k - 2(k + 1) sin’ e)@: 
R sin 0 cos 8 

[I + y sin’ el2 (5 )  
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Theory for nematic twisted layers 

and 

Q - psin28 
” = (:) 1 + ksin28 - (k + I)sin48’ 

where the abbreviations 

R = -  Aed2 D2 y = - ,  K22 L =  K33 - KII 
n2&:K,, ’ Kl I KI I 

K33 - 2K22 2nd 
and p = - K22 Pa k =  

(7) 

J 
are introduced and the integration constant Q is determined by the condition 

r n  
dxax = ~ 1 .  Jo 

The relation between R and the applied voltage U at the plates is 

U 2  1 * dx 

where 

and AE is assumed to be positive. 

3. The bifurcation point 
If the tilt angles at the boundaries K and o vanish, the solution O(x) = 0 of 

equation (5) bifurcates at a definite voltage U,. This threshold can be found by 
expanding 

and 

where O(O’) symbolizes that higher order terms proportional to 8’ has been neglected. 
Linearizing equation (5 ) ,  we find 

The differential equation (1 1) with boundary conditions O ( 0 )  = 0 and O(n) = 0 has 
the non-trivial solution constant sin x for 
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or 

P. Schiller 

with 

Ro =: 1 + V - (k  + 28). (3 (13) 

It can be proved that for U < U, no non-trivial solution of (1 1) exists which satisfies 
the boundary conditions. For supercritical bifurcations U, can be identified with the 
threshold of a Freedericksz transition in accordance with a result published in 131. 

4. Perturbation method 
The ratio 

u - u, 
UC 

u = -  

determines the distance to the bifurcation point. Furthermore a small parameter E is 
introduced by 

u = *&2,  (15) 

where the positive sign is valid for U > U, and the negative sign for the opposite case. 
E determines the order of magnitude of terms in the perturbation expansions for 8 and 
@. The distortion angle 8 is expanded in a series 

e = o , + e 3 + e 5 +  . . . ,  (16) 

where the magnitude of 6, is nth order with respect to E ;  

maxl8,(x)l - E". 

The pretilt angles at the boundaries are assumed to be sufficiently small (JK + WJ < So) 
so that they can be regarded as third order terms 

u N E' and w - c3 .  (17) 

The expansions of R and (D, have terms of even order 

1 R = RO(1 + R2 + R4 3. . . .), 

1 
with R, - E" and max(cp,(x)( - E". 

Because of equation (8) the conditions 

jon cp2(x)dx = 0 and cp4(x)dx = 0 (19) s," 
are satisfied. 

Now we expand equation ( 5 )  in a Taylor series with powers of 8, insert the 
expansions (1 6) and (1 8) and arrange the terms according to their order of magnitude. 
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Theory for nematic twisted layers 73 

This procedure results in a hierarchy of differential equations 

4 ,  + 61 = 0, 

+ 2(k + P)o)cp201 - 2(k + 1)@1 + Ro(+O: - R26, + 2 ~ 0 : )  
and 

O5xx + eS = L5(el 3 O3); 

L,(O,, 0 , )  is given explicitly in the Appendix. The boundary conditions are 

e , (o)  = = 0. 

e,(o) = IC, e,(.n) = (21) 
e,(o) = e,(z) = 0. 

Equations (20) are solved step by step. With boundary conditions (21) the first 
differential equation has the solution 

8 ,  = b, sinx, (22) 
where b, can be chosen arbitrarily. Inserting equation (22) into equation (6) ,  expand- 
ing the relation equation (6 )  in a Taylor series and taking into account the condition 
( 1  9) yields 

(P2 = ( k  + P W :  - 0:) (23) 
and by integration 

@(x) = (:) [x + t ( k  + p)b: sin 2x1 + 0 ( z 4 ) .  (24) 

Similarly, R2 is determined by applying the relation (9) to give 

R2 = yb: + 2u (25) 
O , ,  (p2 and R, are inserted in the right-hand side of the second equation (20). This 
differential equation has the solution 

(26) 0, = b, sinx + cb: sin 3x + a3 cosx + xcosx(R,ub, - tBb:), 

where 

and 

L + Roy - V ( s i [ ( k  + 8)” k + 1]} 

a3 and b, are determined by the boundary conditions of 0,.  Since 0, (0) = IC we obtain 
a, = IC.  The second boundary condition O,(z) = o is satisfied, when 

B 6 -ub, + - b ;  = - 
4& RO ’ 
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74 P. Schiller 

with 

For the special case 6 = 0 equation (27) coincides with a result obtained by Raynes 
~31. 

8, can be rewritten as 

6, = KCOSX - Gxcosx + 6 ,  sinx + cb: sin3x. (29) 
R, and q4 in the expansions (18) are obtained by using equations (9),  (6) and (19); they 
give 

R, = - aybf + 2yb,b, + 2 p b :  + u2 + ydb, (30) 
and q4 is defined in the appendix. Finally, the coefficient b, in equation (29) is 
determined by applying the last equation of the hierarchy (20). 

As the eigenvalue problem 

6 S J X  + 65 = 265 

with boundary conditions (21) has the non-trivial solution 

e5 = b, sinx 

for A = 0, the solvability condition 

ja’ L,(B,, 6,) sin xdx  = 0 

has to be satisfied (Fredholm’s theorem). Condition (31) leads to 

[ (P  + 48c2)b: + M6b: 
1 

3Bb: - 4 % ~  6, = 

- 2&(1 + y)ub: + 2 & ~ 6  + 2Rau2b,],  

where 

P = - 3L + 2 + (12y + 9y2)& 12 7 
[9k(k + p)’ + 48k2 + 60kp + 12P2 + 66k + 368 + 301 

and 

M =  - L - l + y R ( ) -  4 ’{ Sk - 48 - 31 . I 
The final result is 

8 = (b ,  + b,)sinx + KCOSX - 6xcosx + cb: sin3x + 0 (2). (33) 

It should be noted, that @(x) can be determined up to terms proportional to E~ by 
integrating (p4 and adding the result to the expansion (24). 
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Theory for nematic twisted layers 75 

5. Strong response of the director rotation angle 
The maximum value fl(n/2) of the director rotation grows very rapidly when 

slightly changing u as B tends to zero. Supposing 6 = 0 then equation (27) can be 
written as 

B 
u = -b : .  

4& 
(34) 

According to equation (33), b,  is approximately the director rotation in the mid-plane 
of the layer, neglecting terms proportional to e3 .  Unfortunately, at B = 0 we obtain 
u = 0 and b,  can be chosen arbitrarily. In this case a power law with the next even 
exponent 

u = constant b;‘ (35) 

should be satisfied instead of equation (34). In conclusion, modifications of the 
perturbation method are necessary if B is zero or small in the sense 

(36) IBI < IP + 4 8 ~ ~ 1 .  

e = e , + e , + e , +  . . . ,  

The perturbation treatment starts with the series 

where the indices characterize the order of magnitude in complete agreement with 
equation (16). However, motivated by the relation (35) equation (15) is replaced by 

u = + E 4  (37) 

B - e2 (38) 

JC N E’ and o - 2.  (39) 

and taking into account the inequality (36) the assumption 

is made. If surface tilts are present, the angles should be very small 

Now the boundary conditions are 

(40) 1 e,(o) = = 0, 

O,(O) = e 3 ( 4  = 0, 

e , (O)  = K and e,(n) = o. 

The same procedure as applied in the previous section leads to a hierarchy of 
equations for 0,. Compared to equation (20) this hierarchy is somewhat modified, as 
the term Bb: is no longer proportional to but proportional to 6’ .  With this 
modification the second member of equations (20) is converted to 

e3xx + 4 = - 8cb: sin 3x. (41) 

O3 = b, sin x + cb: sin 3x. (42) 

Regarding boundary conditions (40) the solution of equation (41) is 
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76 P. Schiller 

Equations (12), (22) and (23) for U,, 6, (x) and (p2(x) remain valid. However, consider- 
ing equations (37) and (39) the relations (25) and (30) are simplified to 

and 
R2 = yb: 
R, = -~ :yb? + 2yb,b, + 2u. 

(43) 

Using equations (42), (43) and (38) the terms in the hierarchy (20) are rearranged and 
the collection of all terms proportional to E’ leads to 

6s.xx + O5 = - sinx[2uRob, - 3Bb: + $(P + 48c2)b:] + A ,  sin3x + B, sin5x. 
(44) 

The coefficients A ,  and B, are not written down explicitly, as we do not need them in 
further calculations. 

Equation (44) has the general solution 

65 = a, cosx + b, sinx + xcosx [uRob, - $Bb: + $(P + 48 c2)bf] 

- $ A ,  sin 3x - &B5 sin 5x. (45) 

The boundary conditions (40) require a, = ic and a relation between u and b, , namely 

Bb: (P + 48c2)b: - 6 _ -  -ub, + - - 
4R0 ~ R o  Ro . 

To lowest order the director orientation is determined by 

6 = b, sinx + O(E,) 1 
and 1 0 = (%) [x + $(k + F)b: sin2x1 + O(e4). 

(47) 

Looking at equation (46) the question arises what happens when both B and 
P + 48 c2 are zero. In this case a power law u = constant bt is to be expected for zero 
surface tilt angles at the boundaries (6 = 0) and the rapid grow of the maximum 
rotation angle with changing u is enhanced further. 

6. Discussion 
The maximum value of the director rotation A = 6(n/2) is suitable to illustrate the 

Freedericksz effect. Plotting A against the voltage ratio u a comparison with the 
results of computer modelling is possible when the same combination of constants K , ,  
y and are chosen as those used by Raynes [3]. According to equation (33) we have 

A = b1 + b3 - cb:, (48) 
if B is not small. b, and b, are determined by equations (27) and (32), respectively. The 
parameter b, should not exceed 0-5 to obtain accurate results. For different twist 
angles figure 2 shows the functions A(u). They agree well with the results obtained 
from numerical calculations [3]. 

If B is small, satisfying inequality (36), the director rotation in the mid-plane of 
the layer is determined by equation (46) and A = b, . In figure 3 A is plotted against 
u choosing the parameters &, y and /3 so that B = 0 (curves a and c) and B is small 
but not zero (curve b). It can be checked that there is a good agreement with the results 
obtained numerically. Particularly, the slope of curve b changes its sign at a relatively 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Theory for  nematic twisted layers 77 

\' t0.7 

0 k U I U  
-0.1 0 0.1 

Figure 2. The maximum rotation angle A plotted against the voltage ratio u for 6 = 0, f~ = 1, 
y = 2, K , ,  = lOpN, K,, = 5pN and K3, = 20pN with varying twist angle: (a) u = O", 
(b) u = 90", (c) CI = 270". 

-0.02 -0.01 0 0.01 0.02 
Figure 3. The rotation angle A plotted against u for the parameter combinations satisfying 

the inequality (36): 6 = 0, fl  = 1, K , ,  = lOpN, K22 = 5pN and (a) y = 1, K33 = 
9.7pN, u = 270°, (b) y = 2, K3, = 20pN, u = 180°, (c) y = 3, K33 = 185pN, 
u = 270". 

Figure 4. Influence of the surface tilt angles on the function A(u) .  The curves are determinated 
by using the parameters CI = 270°, = 1, y = 1, K I ,  = lOpN, K22 = SpN, K3, = 
9.7pN and the tilt angles at  the boundaries (a) IC = w = 0", (6) K = w = I",  
( c )  K = w = 2". 

low value of A .  This behaviour is confirmed by numerical results as seen by figure 3 
in [3]. 

Finally, the influence of surface tilts at the boundaries is demonstrated by 
figure 4. As B = 0 the rotation angle A has been determined by equation (46). It 
should be noted that the effect of pretilts in twisted nematics has been also investigated 
by Fraser [6] by using another mathematical approach. In conclusion, the perturbation 
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78 P. Schiller 

method is suitable to describe the Freedericksz transition of planar twisted nematic 
layers when the distortions are not too large. The results can be used to predict the 
optimum combinations of physical parameters for application in electro-optic devices. 

I am indebted to Professor D. Demus for useful discussions. 
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